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Abstract Traditional estimation techniques significantly under-call the true mone-
tary value of the resource on which mine plans and operations base their business. 
At Olympic Dam, this is worth billions of dollars. Realising this value requires 
mine planning engineers to be supplied with an accurate recoverable resource 
model that correctly estimates the tonnes and grade for a specified support and 
time scale, at the time of mining. 

Models estimated using linear methods and wide-spaced drilling typically fail 
to accurately predict recoverable resources, mainly because of incorrectly account-
ing for the change of support and information effect. The unavoidable smoothing 
property of weighted averages is also a significant obstacle. These failures are 
more significant in underground mining scenarios where higher cut-offs (with re-
spect to the average grades of mineralisation) are applied.  This paper discusses a 
different approach to recoverable resource estimation based on conditional simula-
tion methods. 

The Olympic Dam deposit is one the world’s largest polymetallic deposits. The 
resource estimation practices at Olympic Dam are comprised of a combination of 
linear and non-linear techniques to estimate 16 different grade variables critical to 
mine planning. Measured resources are supported by 20m-spaced underground 
drilling fans where Kriged estimates perform well in terms of mine to mill recon-
ciliation. However, this not the case for resources classified as Indicated and In-
ferred. Until infill drilling is undertaken, the accurate estimation of tonnes and 
grade to the mill is not possible with the Kriged model. This has a significant im-
pact on life-of-mine economic valuations and ore reserve estimates of Olympic 
Dam. 

Conditional simulation has been used to generate a recoverable resource esti-
mate from a single realisation. This conditional simulation model takes into ac-
count both the change of support and the information effect, without the undesired 
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smoothing effect that classic methods introduce. This paper describes the signifi-
cant challenges faced in applying this approach, including issues such as which 
realisation to choose; data conditioning in areas with little information; ensuring 
that the multivariate relationships among variables are respected at a block level; 
software and hardware challenges; and defining benchmarks for ensuring that the 
“correct” grade-tonnage curves are reproduced. These challenges have to be over-
come while ensuring that the resulting estimate is a JORC-compliant, and is also 
acceptable under BHP Billiton’s corporate governance standards. 

Introduction 
Olympic Dam is Australia’s largest underground sub-level open stoping mine pro-
ducing around 10 Mt of ore per annum.  The Olympic Dam mine has been in pro-
duction since 1988 using a standard mining method of mechanised sublevel long-
hole open stoping (SLOS), with cemented aggregate backfill. The processing plant 
is a fully integrated circuit that consists of autogenous grinding mills, flotation cir-
cuits to recover copper concentrate, and tailings leach circuits to recover uranium. 
The copper concentrate is treated in an onsite Direct-to-Blister-Furnace (DBF) 
smelter while an onsite refinery produces copper cathode and recovers gold and 
silver.  

Olympic Dam is a very large iron oxide-hosted Cu-U-Au-Ag ore deposit. The 
deposit is hosted entirely within the Olympic Dam Breccia Complex (ODBC), and 
is unconformably overlain by approximately 300m of unmineralised, flat-lying, 
sedimentary rocks. The deposit was discovered in the late 1970’s and the geology 
has been studied and described by numerous authors (Roberts & Hudson, 1983); 
(Ehrig, McPhie, & Kamenetsky, 2012). A key feature of the deposit is a central 
core of haematite–quartz breccia largely devoid of copper and uranium mineralisa-
tion. In general, the host-breccias are more haematite-rich towards the centre of 
the ODBC and more granitic at the margins. Including the sulphide minerals, there 
are more than 100 identified ore and gangue minerals. The most common minerals 
include haematite, quartz, sericite, feldspar, chlorite, barite, fluorite, siderite, py-
rite, chalcopyrite, bornite and chalcocite. The three primary uranium minerals ac-
count for less than 0.1% of the total rock mass, and occur as uraninite, coffinite 
and brannerite. 

The bulk of economic mineralisation is associated with sulphide-bearing haem-
atite-rich breccias. The majority of copper mineralisation occurs as chalcopyrite, 
bornite and chalcocite, and dominantly manifests as binary pairings of chalcopy-
rite ± bornite, and bornite ± chalcocite. Uranium, gold, silver and copper minerals 
are all correlated to a statistically significant degree. 
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Why Produce a Recoverable Resource Model? 
The business case for recoverable resource modelling is simple: the true monetary 
value of Olympic Dam is highly leveraged to grade. For example, depending on 
the specific mine plan, for every 10% increase in grade in the early part of the 
plan, there is a 25% increase in annual cash flow. Around two thirds of the life-of-
mine is based on widely spaced drilling, and is therefore a smoothed and under-
representative view of the grade that will be realised when close spaced drilling 
and high resolution estimation is undertaken. Modelling the correct distribution of 
grade is worth billions of dollars to the value of Olympic Dam. 

In the past 40 or so years there have many attempts at producing effective re-
coverable resource models with varying degrees of success; some relevant discus-
sions and case studies include (Journel & Huijbregts, Mining Geostatistics, 1978); 
(Journel & Kyriakidis, 2004); (Assibey-Bonsu & Krige, 1999); (Rossi & Parker, 
1993); (Abzalov, 2006); (Krige & Assibey-Bonsu, 1999); (Rossi & Deutsch, 
2014); (Roth & Deraisme, 2000). 

In an environment of falling commodity prices, with a focus on reducing costs 
and improving financial metrics of cash flow, IRR, NPV and capital efficiency, an 
equally important consideration to costs is improving the revenue. The old adage, 
“grade is king” is never more true in this environment. For deposits that are rela-
tively high grade, and where the spatial continuity of that grade is amenable to se-
lective mining, increasing the grade for the same tonnage delivered to the mill is 
very effective in increasing the margin on each unit of metal produced. The min-
ing cost per tonne of ore may increase but the cost per pound of copper can greatly 
decrease. 

A common strategy at Olympic Dam has been to increase metal production by 
increasing process plant ore tonnage throughput. Unless there is latent capacity in 
the plant, there is a large capital requirement in order to accommodate the increase 
in tonnes. Alternatively, increasing metal throughput in the operation can be 
achieved by raising the grade of the ore feed from the mine, which is generally 
much less capital intensive since the plant is large and complex.   

The Olympic Dam deposit is relatively high grade with contiguous zones of 
2%-4% copper grade. This continuity of high grade gives the operation an oppor-
tunity in the planning and mining processes to increase the grade delivered to the 
processing plant. Relatively close 20m spaced lines of Measured Resource drilling 
is required to define these contiguous high grade ore shoots. The Olympic Dam 
Inferred Resource is defined by relatively wide-spaced drilling at 100-250m no-
tional centres. Indicated Resource is defined by both wide-spaced surface and 
wide-spaced underground drilling at 70-100m centres. Comprehensive drill spac-
ing studies (see later section) have back-tested the effect of re-sampling Measured 
Resource (20m drill spacing) at Inferred and Indicated drill spacings in the depos-
it. These studies have demonstrated that a traditional Ordinary Kriged (OK) linear 
estimate using this wide-spaced drilling information is neither globally accurate in 
terms of tonnes and grade, nor locally spatially accurate in representing the orien-
tation of the high grade zones which are to be mined (Figure 1). This holds true 
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for geological interpretations and models, estimated models, and simulated mod-
els, since these are a function of data spacing. 

 

 
Figure 1: Representative cross-section through Olympic Dam showing differences in cop-
per grade, modelled using Inferred (250m spaced) drill hole information, and Measured 
(20m spaced) drill hole information. Each model depicted above has a unique geological in-
terpretation that is a function of the data spacing. 

Over the longer term, how and when these higher grade ores are exploited can 
also have a direct impact on the life and the consequent NPV of the operation. 
Since the life-of-mine has approximately two thirds of the Resource at Indicated 
or Inferred status, there is a poor conversion of Resource to Reserve, which under-
states the overall value of the operation in the life-of-mine plans. In addition, ex-
perience at Olympic Dam and many other operations elsewhere has shown that for 
the same volume of material mined, an increase in grade is realised with later infill 
drilling. This is due to the high grade mineralisation controls that exist at a smaller 
scale, compounded by the well-documented support effect and the inherent 
smoothing of linear estimators such as Inverse-distance weighted and Kriging 
methods. The result is that estimates in areas with wide spaced information under-
call the true tonnage and grade that are realised once close spaced drilling and 
high resolution estimation is undertaken.  

In the authors’ experience, at Olympic Dam the most practical solution to 
overcoming this issue is to produce a recoverable resource model using a simula-
tion technique. Conditional simulations which comprehensively validate against 
the drill hole data are the only technique that avoids smoothing by reproducing the 
original data variance (high granularity models), estimates the tonnes and grade at 
the time of mining for any drill spacing, and produces a better local spatial model 
that can be used for practical geological, mine planning and financial valuation 
purposes. 

Combined with traditional OK estimates of Measured Resource, estimates of 
Inferred and Indicated Resource produced using conditional simulation are collec-
tively referred to as the Recoverable Resource Model (RRM). This model is an 
enabler to several other mine planning value-adding initiatives which unlock the 
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true value of the deposit. These initiatives are collectively referred to as the grade 
focus strategy. 

The Grade Focus Strategy 
The RRM is integral to the overall strategy to increase grade and value at Olympic 
Dam. This strategy is aimed at maximising the contribution of ore grade to the 
value proposition for the operation. Higher ore grades have a direct impact on the 
revenue stream, and are very effective in lowering the unit cost of metal produc-
tion. This strategy is based on six key focus areas that all contribute to improving 
the value contribution of ore grade. 

1) Resource modelling. By using conditional simulation to estimate grade in 
model areas supported by wide-spaced drilling, a higher grade from im-
proved granularity can be realised in the mine planning process. 

2) Reserves. By using a more sophisticated automated stope generation tech-
nique, a higher design grade can be realised through a more efficient cap-
ture of high grade resource. 

3) Resource utilisation. By including all potential (pre-resource) mineralisa-
tion and Inferred Resource in the mine plan, the full possible value of the 
underground operation can be assessed, allowing a higher cut-off to be ap-
plied, and therefore a higher grade to be realised. 

4) Cut-off grade optimisation. Historically the operation has been valued on 
a fixed cut-off grade. The future plan is to implement a variable cut-off 
strategy, where the cut-off varies between stopes and over time. This 
change in stope design practice will allow the optimisation process to add 
value by promoting grade in time, beyond the level achieved using a fixed 
cut-off. 

5) Rejection of sub-grade material from the ore stream. Separate removal 
of below cut-off material and low grade development to the surface raises 
the average ore grade, and increases the proportion of high grade stope ma-
terial in the ore stream. 

6) Stope sequencing and scheduling. Higher value mine plans can be 
achieved by promoting higher grade stopes forward in the schedule, and 
deferring lower grade stopes in time.  

Both the absolute and relative contribution of these areas to the value proposi-
tion will depend on the context of the specific mine plan that is being evaluated. 
The key point is that for the full value of the resource to be realised, all six areas 
are necessary. No modelling technique alone can realise the full value. 

Fundamental Challenges 
The development of a recoverable resource model for Olympic Dam has been a 
significant challenge. Some of these challenges are purely technical in nature, but 
there are also fundamental challenges that inhibit the acceptance of this modelling 
technique. 
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Ultimately, if recoverable resource models are not used to generate mine plans, 
then they are of little practical use. One of the critical factors to success is the sup-
port of mine planning engineers in understanding the value these models hold, and 
to use them for reserving. Without this, it is just another low value, esoteric exer-
cise. To extract the maximum value from the model, the cultural inertia manifest 
as conservatism and fear of failure, must change, or the upside in grade will never 
be realised. 

Gaining understanding and support from decision makers in the business has 
been one of the single greatest challenges. Concepts that are basic to geostatisti-
cians and resource geologists (e.g., averaging, grade above cut-off, change of sup-
port and volume-variance) are obscure to decision makers, and are treated with 
suspicion and even derision. The lack of knowledge regarding these elementary 
concepts in the industry, its leaders, and some of the broader consultancy commu-
nity to which these leaders defer, are real and significant barriers to the success of 
this work.   

Technical Challenges 
With regard to a deposit as large as Olympic Dam, there are several technical hur-
dles to overcome in attempting to produce a recoverable resource model using 
conditional simulation.  

The model covers an area of 6 x 3km, and extends to a depth of 2km. It is 
comprised of 5 x 10 x 5m block support, from estimates using a number of tech-
niques for different areas, elements and minerals in the deposit. All elements and 
minerals in areas classified as Measured Resource are estimated using Ordinary 
Kriging (OK). Within areas classified as Inferred and Indicated Resource, Cu, 
U3O8, Au, Ag, S and SG are estimated using conditional simulation. The copper 
mineralogy is stoichiometrically calculated from the simulated Cu and S esti-
mates. All other elements and minerals are estimated using OK. 

The dimensions of the deposit present the foremost challenge. At a 2.5m node 
spacing, a single model covering the entire deposit  comprising of a minimum of 
14 data variables would require ~1.5 billion nodes, and constitute a model file size 
in excess of 700GB. A single drill hole file used for this simulation would com-
prise of ~950,000 2.5m length samples. Working with these files is impractical, 
and there is no simulation software capable of handling such a large model file. To 
deal with this challenge, the deposit is split into 16 individual sub-models and cor-
responding drill hole files, based on gross geological differences and also the abil-
ity of the simulation algorithm and software to perform the task in a reasonable 
amount of time. Once these individual models are amalgamated into one model 
and regularised, there are no boundary artifacts evident in the combined model. 
The characteristics of these individual models are listed in Table 1. 
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Table 1: Some characteristics of Olympic Dam simulation models 
Model Characteristics Group 1 Models Group 2 Models 
No. of Models 9 7 
Model Dimensions ~1 x 1 x 1km ~2 x 1 x 1km 
Node Size 2.5 x 2.5 x 2.5m 2.5 x 2.5 x 2.5m 
No. of Nodes ~64 million ~128 million 
No. of Simulated Variables 6 6 
No. of Total Variables 14 14 
Model Run Time ~8 hours ~16 hours 
Node Model File Size ~6.5GB ~12.4GB 

 
Simulation is performed separately in the chalcopyrite ± bornite (220) domain, 

and the bornite ± chalcocite (230) domain, to allow the unique grade relationships 
observed in the drilling information (Figure 2) to be honoured. The domains are 
established by modelling the unique Cu to S ratios of these sulphides using a com-
bination of deterministic modelling and probabilistic (Indicator Kriging) methods. 

 

 
Figure 2: Scatter plots of Cu v S and Cu v U3O8 for the chalcopyrite ± bornite (220) do-
main, and the bornite ± chalcocite (230) domain for drilling information in Model 18_19 of 
Olympic Dam. 
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What Has Been Tested 
A significant amount of work has been undertaken over the last few years to estab-
lish the foundations of the recoverable resource model at Olympic Dam. Signifi-
cant improvements in deterministic modelling of the key sulphide domains, and 
work on previous simulation models of Olympic Dam, have also played a promi-
nent role in determining the most efficient path forward. The key attributes re-
quired of techniques and software is the usability of models by mine planning, the 
speed and stability of the algorithm and software, the honouring of multivariate re-
lationships between simulated variables, and the ability to integrate several models 
from several simultaneous sources. 

In these authors’ experiences, conditional simulation is the preferred technique 
for underground mine planning work rather than other techniques such as Uniform 
Conditioning (UC) and Multiple Indicator Kriging (MIK), because they suffer 
from the same smoothing effect evident in all forms of Kriging, and also produce 
models that are more suitable for input into open pit mine planning software.  

Following extensive trials over several years, the resource team has settled on 
Sequential Gaussian Simulation (Isaaks, 1990) as the most appropriate algorithm 
to use. Stepwise conditional transformations (Leuangthong & Deutsch, 2003) are 
applied to account for the correlation between metals. Other algorithms, including 
co-simulation with Bayesian Updating (Journel A. G., 1988), (Rossi & 
Badenhorst, 2010) and Projection Pursuit Multivariate Transformation (Friedman 
& Tukey, 1974), (Barnett, Manchuk, & Deutsch, 2012) have been extensively 
trialled and rejected either because of poor reproducibility of input statistics, diffi-
culty in replicating multivariate relationships observed in the drilling information, 
poor spatial match to input data, and the inability to deal with large datasets, or a 
combination of all of the above. SGS point simulation rather than Direct Block 
Simulation (DBS) is preferred since validation against the input data of DBS 
shows issues caused by the proportional effect present in the original data, which 
has been shown to introduce biases in the final output (Leuangthong, 2006). 

Both commercially available and open source software have been used with 
varying degrees of success. Significant issues which were encountered included: 
software errors introduced by inconsistently incorporating GSLib-based routines 
(Deutsch & Journel, 1998); very slow operation with large datasets; stability is-
sues and data corruption; or problems with integration of models from multiple 
users working simultaneously on different parts of the deposit. It is clear from al-
most a decade of work on this topic at Olympic Dam that it is unlikely that stand-
ard commercially available software packages can be used to produce recoverable 
resource estimates that meet the mine planning and the corporate governance re-
quirements. Therefore a modified version of the GSLib programs has been adopt-
ed to complete the work. 

In order to overcome some of the known issues with SGS, including edge ef-
fects and grade blow-outs between drill holes or at the edges of data, as well as to 
increase the program’s functionality, the original GSLib FORTRAN code was 
modified in-house. One of the key enhancements made to the code was the im-
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plementation of multiple search passes with the ability to have different parame-
ters for each pass. For this reason, the program has been named Dynamic Search 
SGS or DS-SGS. Other enhancements include the addition of domain control, not 
drawing from the global distribution, multiple coarse/fine grid redefined in terms 
of user input of x, y, z grid spacing, independent soft nodes and hard data search 
with assign to nodes selected, and minimum number of soft nodes selection with 
assign to nodes option. 

Case Study 
The aim of the case study was to examine the change in grade/tonnage infor-
mation for an existing well-drilled 20m spaced Measured Resource area (here af-
ter referred to as “truth"), by estimating and simulating it using wider Indicated, 
and Inferred Resource drill spacings. The goal is to determine if the simulation pa-
rameters using the wide spaced drilling, yielded results that matched the 20m 
spaced Measured Resource truth, thus providing a mechanism to calibrate and val-
idate simulation models in other areas of the deposit. 

In order to do this, a conventional drill hole spacing-type approach was fol-
lowed, but with a few differences. The starting point was to take a vast area of 
Measured Resource that has been drilled from underground on 20m spaced lines, 
and treat this as the “truth”. This area constitutes 1.3 billion tonnes of Mineral Re-
source and 300 Mt of Proved Ore Reserve, of which 170 Mt has been mined over 
the last 27 years (Figure 3).  

 

 
Figure 3: Location of Measured Resource in relation to the life-of-mine stope set. Note the 
extensive spatial coverage of Measured Resource across the deposit. 

This represents approximately 30% of the expected ultimate underground re-
serve across the entire deposit, and is representative of the material that will be 
mined in future years. Mine to mill reconciliation results demonstrably show that 
over a 3 year period (~30 Mt), the estimated tonnes and grade of Measured Re-
source varies by less than 1% from that actually recovered. Thus, there is high 
confidence that the Measured Resource volume is a good yardstick by which to 
validate the simulation results. 
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One of the primary criteria for determining Resource classification is drill hole 
spacing, and for convenience will be used in this discussion. Table 2 shows the 
relative drill hole spacing applied at Olympic Dam for Inferred through to Meas-
ured Resource, and the relationship to the estimation support.  

 
Table 2: Resource classification and drill spacing used at Olympic Dam. 

Resource Classification Drill hole Spacing Model Block Size 
Inferred Resource 250m 120x100x5m 

Indicated Resource 100m 60x50x5m 
Measured Resource 20m 5x10x5m 

Comparing Raw Drill hole Data 
A fixed volume of 20m spaced Measured Resource was originally drilled from the 
surface on 70-100m centres, and is equivalent to Indicated Resource spacing. 
These surface holes were re-sampled at 250m spaced centres to approximate the 
equivalent Inferred Resource drill spacing. This re-sampling was undertaken 25 
times by randomly selecting holes at 250m centres in order to capture the range of 
possible outcomes from variations in the drilling grid. This process approximates a 
drilling program that starts at 250m spacing, and is then progressively infill drilled 
to 100m and 20m spacings. The outcome is a comparison of the Nearest Neigh-
bour-declustered drill hole data statistics and grade-tonnage curves of the different 
grid spacings of 20m, 100m and the 25 iterations of the 250m spacing. The differ-
ences in results were alarming (Figure 4).  

 

 
Figure 4: Declustered sample grade-tonnage curves within the Measured Resource volume. 
The differences in information for the 100m dataset and 250m re-sampled datasets are 
clearly demonstrated. Cueq = Cu + (U3O8*2.44) + (Au*0.881) + (Ag*0.0048) – (S* 
0.191). 
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There is considerable difference among the twenty five 250m iterations with 23 
(92%) of them under-calling the actual tonnes and grade by a considerable margin, 
whereas the 100m spaced drilling dataset is much closer to the 20m spaced da-
taset. In classical geostatistics, this is termed the Information Effect, or more pre-
cisely, in this case, the Misinformation Effect.  

Comparing the 100m-based and 25x250m-based Model Estimates 
Each of the 250m drilling datasets had its own geological model and domains, and 
was used to create 25 separate resource models that were estimated using Ordinary 
Kriging into block sizes of 120x100x5m. The same process was applied using the 
100m spaced dataset to a model with unique geological and domain characteris-
tics, and a 60x50x5m block size. The resource grade tonnage results mirrored the 
differences observed in the drilling data noted previously. The 26 estimated mod-
els (25 Inferred and 1 Indicated) were then converted to Reserves by the mine 
planning engineers running each through an automated and semi-automated stope 
design process.  

The results from the Reserve grade-tonnage curves mirrored that of the re-
source models, and also the underlying drill hole data.  That is, if the drill hole da-
taset was the lowest of the group on the grade-tonnage curve, then the correspond-
ing resource and reserve models were also the lowest (Figure 5). 

A Sequential Gaussian Simulation was then developed using 3 of the 25 In-
ferred datasets by choosing a low, mid and high iteration of drill hole data. An ad-
ditional simulation model was also generated using the single 100m spaced Indi-
cated dataset. The results mirrored those of the drill holes, and resource and 
reserve models discussed earlier. The results are very clear; the underlying data 
exerts the strongest control on whether or not the 20m spaced Measured Resource 
grade-tonnage result can be achieved from wide-spaced Inferred or Indicated Re-
source datasets. The conclusion is that all resource and reserve models, be they es-
timated or simulated, are strongly anchored to the starting drill hole data. Locally, 
different mine areas typically behaved differently from iteration to iteration. Most 
of the 25 Inferred Resource datasets were low with respect to the 20m spaced 
Measured Resource “truth”, but a few were higher. This is a random feature, and 
is attributed to chance interactions with geological influences. 
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Figure 5: Comparison between Ore Reserve grade-tonnage curves using Measured Re-
source, and re-sampled Indicated and Inferred Resource models. Cueq = Cu + (U3O8*2.44) 
+ (Au*0.881) + (Ag*0.0048) – (S* 0.191). 

Observations & Discussion 
A critical observation is that there is a fundamental change to the drill hole infor-
mation from iteration to iteration for the same spacing, as well as when the grid 
spacing decreases. The proportions of grades change above a cut-off and the over-
all volume of mineralised material increases. This happens in 92% of the cases de-
scribed; however there were a few 250m spaced iterations (8%) where the propor-
tion and grade of drill holes were higher than the 20m spaced Measured Resource 
“truth”. Locally the pattern of uplift or downgrade can differ significantly from 
that observed globally. 

These differences are due to imperfect information (including sampling and es-
timation error), non-representativeness of data at a certain spacing, and chance in-
teractions of drill holes with complex geology and geometry. There is natural var-
iation in the orebody which means certain drill spacing and orientation with 
respect to orebody geometry are not adequate to fully sample the real distribution 
and proportions of grades. This can lead to an over-representation of low values 
and under-representation of high values, and vice-versa, which results in vast dif-
ferences in reserve stope shapes (Figure 6). The Misinformation Effect is used in 
this case as a collective term to describe all of the aforementioned errors and ef-
fects, which is more encompassing than the traditionally used Information Effect. 
Whilst there is a relationship between the two, the term Misinformation has been 
chosen to avoid pedanticism and confusion. 
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Figure 6: Comparison between reserve stopes in the Measured Resource volume at the 
same cut-off, using (a) Measured Resource model and (b) one of the 25 re-sampled Inferred 
Resource models. Note how poorly the Resource estimate based on Inferred Resource drill 
spacing estimates the mineable tonnes for the same mining area. 

 
At Olympic Dam, the Misinformation Effect in volumes informed by wide-

spaced data leads to underestimation of the actual tonnes and grades. 
Regardless of the drill spacing, the best that can be done by the practitioner is 

to honour the available drill hole data. This approach will not capture the range of 
uncertainty, and therefore a different strategy is required to account for the Misin-
formation Effect. The Olympic Dam Mine Planning department will employ the 
use of modifying factors based on reconciliation to account for the global upside 
from the Misinformation Effect, allowing for local differences that may result in 
downside. 

Which Realisation to Choose? 

Conditional simulation is commonly used for quantifying resource uncertainty. 
Typically this approach involves generating numerous realisations, and 
developing probabilities and confidence intervals from these. The multiple 
realisations are interpreted as values of the conditional cumulative distribution 
function (ccdf) of each node: 

        (1) 
 

where “Prob*” represents the estimated probability at location x; Z(x) represents 
the random variable at location x; zc represents an arbitrary cutoff; (n) represents 
the conditioning data used to simulate node at location x; and F represents the 
conditional distribution function.  

a 

b 
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Unfortunately, when conditional simulation is used for recoverable resource 
modelling, this same “many realisations” mindset is mistakenly also applied, lead-
ing to questions about the number of realisations generated during simulation and 
the decision processes used to select a single realisation for further processing. 
What most practitioners do not realise, and most theoreticians ignore, is that the 
change of support variance is much more significant than the variance of the con-
ditional distribution provided by simulation. A change in mindset is required to 
accept that conditional simulation can be a valuable recoverable resource tech-
nique. 

As the overall volume of the simulation increases, the global difference be-
tween the realisations becomes progressively smaller. For a large model area of 
~1.6 billion tonnes of resource and ~270 Mt of reserve, the difference between re-
alisations is ~1%. Over the entire deposit of >10 billion tonnes, the difference is 
<0.5% whereas the difference between small blocks and big blocks is >20% for 
this same area. 

When examining simulation realisations at the small block scale, realisations 
can exhibit significant local variation, leading to the erroneous conclusion that se-
lecting a meaningful single realisation for further work is difficult or problematic. 
This erroneous conclusion is reached because of a failure to appreciate that during 
recoverable resource modelling of large areas, the difference in the change of sup-
port is an order of magnitude greater than the spread of realisations. In a sense, the 
realisations converge to approximate the same solution when considering large 
volumes. This change in variance is governed by the volume-variance relation-
ship, which can be illustrated by examining the change in mean grade above a cut-
off for varying block sizes. The tabulation below shows this effect with 100 Cu 
realisations for three different levels of support for a ~270 Mt parcel of material 
that is expected to convert to Ore Reserves from the North Mine Area of Olympic 
Dam. The volume is a mixture of drill spacings that support Measured, Indicated 
and Inferred Resource. 

The results clearly indicate that as the block size increases, the average grade 
above the cut-off substantially decreases for the same tonnage of material. This 
decrease in relative terms, which comes about solely from the change of support, 
is an order of magnitude greater than the variability between individual simulation 
realisations at the small block scale (Figure 7). 

 
Table 3: Change in average Cu reserve grade above a 1.5% Cu cut-off for 100 simulation 
realisations at varying support size. 

  Relative Change in Ave Grade 
Block 

 Size (m) 5x10x5 60x50x5 120x100x5 120x100x5 
to 5x10x5 

60x50x5 
to 5x10x5 

120x100x5 
to 60x50x5 

Drill 
Spacing 20m 70-100m 100-250m    

Average 
Grade  2.65% 1.86% 1.66% 60% 43% 12% 

Spread of 
realisations  ~1% ~1% ~1%    
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Figure 7: Grade curve for 100 realisations of 5x10x5m (red), 60x50x5m (blue) and 
120x100x5m (green) Resource blocks showing the change in average grade for different 
support. The E-type curve (orange) is the average of 100 realisations at the 5x10x5m sup-
port. 

Thus, for recoverable resource modelling of this large deposit, the number of 
realisations in a simulation is not critical. A single realisation, chosen at random 
from a handful is more than adequate to deal with the change of support problem. 
However, to emphasise the difference between the realisations at the local scale, a 
number of simulations models should be evaluated by the mine planning engi-
neers. Moreover, as the size and area of the simulation increases there is no global 
low, mid or high realisation; this is a misnomer. One realisation that is lowest in 
one particular area may be the highest in another. Globally, there is no difference 
between realisations, so any realisation could be used to develop a mine plan as 
well as the basis for Mineral Resource declaration purposes.  

It should be noted that this local difference between simulation realisations 
does not diminish the usefulness or applicability of the technique. Furthermore, 
the OK version of the model is just as incorrect locally; it is just that it is almost 
always overlooked. Inferred Resource is inferred because there is significant local 
uncertainty, regardless of the modelling technique used. An estimation method 
senso-stricto does not significantly alter this fact. The only way to reduce the local 
uncertainty is to gather more information through drilling. 

The E-type estimate is often suggested as a suitable estimate for recoverable re-
sources. The E-type estimate of 5x10x5 blocks is very smooth and negates the 
change of support correction that is sought (see Figure 7). The variance of the E-
type under calls the actual variance through the mere averaging process and thus it 
is inappropriate as a representation of the true grade-tonnage relationship. 
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The purpose of the recoverable resource modelling work is to produce a block 
model suitable for life-of-mine underground mine planning and financial valua-
tion, public declaration of Resource and Reserves, and drill targeting by mine ge-
ology. The absolute accuracy of the spatial location of stopes in the RRM is not as 
important for underground mine planning purposes as the representation of the 
spatial geometry of ore and the grade architecture. 
 

Conclusions and Recommendations 
There is a strong and compelling business case for focussing on grade improve-
ments at the Olympic Dam operation. Two thirds of the life-of-mine reserves are 
based on wide-spaced drilling, which under-calls the grade that will be realised 
when close spaced drilling and high resolution estimation is undertaken. Model-
ling the expected grade is worth billions of dollars to the operation. 

Conditional simulations that exhaustively validate, both visually and statistical-
ly, against the drill hole data is the only technique that: 

• avoids smoothing by reproducing the original data variance (high 
granularity models); 

• estimates the tonnes and grade at the time of mining for any drill 
spacing;  

• produces a better local spatial model that can be used for practical 
geological, mine planning and financial valuation purposes. 

The recoverable resource model is the main element that underpins a 6 point 
strategy aimed at increasing the grade of the ore feed from the mine. The strategy 
includes improvements to mine planning and mining practices which are all re-
quired to realise the full impact of value improvement. 

The development of a recoverable resource model has not been without chal-
lenges. The most significant is communicating the elementary resource concepts 
and principles to decision makers whom lack the specialised technical skills re-
quired to fully appreciate the importance of recoverable resource modelling. This 
is possibly the single largest inhibitor to a successful recoverable resource model.   

Technical challenges for the Olympic Dam recoverable resource model are 
mostly about the size of the orebody and the inability of available software to ad-
dress the large file sizes required. The only practical solution is to modify the ex-
isting GSLib SGS routine, and create a fit-for-purpose algorithm. Reproduction of 
the correlations among multiple metals pushes the limits of application of the 
Stepwise Conditioning transform method employed. 

The application of a single realisation for recoverable resources is outside the 
usual scope for conditional simulation, see for example (Goovaerts, 1997); 
(Dimitrakopoulos, 1999); (Krige, Assibey-Bonsu, & Tolmay, 2004); (Van Brunt 
& Rossi, 1999). It is therefore important to realise that in this case a single realisa-
tion provides the additional value that the operation requires, and why the usual 
objections to using a single realisation are not applicable. 
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The drill hole spacing case study demonstrably shows the impact of the Misin-
formation Effect; a term coined to describe all the unknowns in a resource esti-
mate. All estimates, regardless of whether they are performed using traditional 
linear or non-linear techniques, are highly leveraged to the starting dataset. No 
amount of “alternate modelling”, multiple simulation realisations, or range analy-
sis can fully describe the uncertainty inherent in the starting dataset.  

 Regardless of the drilling dataset, the best that can be done by the practitioner 
is to honour the available information. This approach will not capture the range of 
uncertainty, and thus the Olympic Dam Mine Planning department will employ 
the use of modifying factors to account for the Misinformation Effect. 

The most common applications of conditional simulation require many realisa-
tions to be evaluated. This is not the case for change of support modelling at 
Olympic Dam, and perhaps on many other large deposits, since the global differ-
ences between realisations are an order of magnitude less than the difference be-
tween change of support models.  However, there can be significant local differ-
ences between realisations and to quantify this impact; a handful of realisations 
should be given to mine planning for evaluation. 

The internal company governance requirements have made it harder to produce 
a recoverable resource model as the basis for a Mineral Resource declaration. It is 
expected that the non-technical hurdles that these requirements bring about may 
be overcome as management is further educated in the value of the using a condi-
tional simulation for resource estimation. 

Acknowledgements 
The authors wish to acknowledge the contributions of geologists at Olympic Dam, 
L. Voortman for his use of the original modifications of the GSLib SGS executa-
ble file, and S. Khosrowshahi for valuable suggestions. E Macmillan is thanked 
for kindly agreeing to review the final manuscript.  

References 
Abzalov, M. Z. (2006). Localized uniform conditioning (LUC): a new apporach 

for direct modeling of small blocks. Mathematical Journal, 393-411. 
Assibey-Bonsu, W., & Krige, D. G. (1999). Use of direct and indirect distributions 

of selective mining units for estimation of receoverable resource/reserves 
for new mining projects. APCOM'99 Symposium. Golden, CO: Colorado 
School of Mines. 

Barnett, R. M., Manchuk, J. G., & Deutsch, C. V. (2012). Projection Pursuit 
Multivariate Transform. Edmonton, Alberta: Centre for Computational 
Geostatistics. 

Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical Software Library 
and User's Guide. New York: Oxford University Press. 

Dimitrakopoulos, R. (1999). Conditional simulations: tools for modeling 
uncertainty in open pit optimization. Optimizing with Whittle (pp. 31-42). 
Perth, Australia: Whittle Programming Pty Ltd. 



18  

Ehrig, K., McPhie, J., & Kamenetsky, V. (2012). Geology and Mineralogical 
Zonation of the Olympic Dam Iron Oxide Cu-U-Au-Ag Deposit, South 
Australia. (pp. 237-267). Society of Economic Geologists, Special 
Publication 16. 

Friedman, J., & Tukey, J. (1974). A Projection Pursuit Algorithm for Exploratory 
Data Analysis. IEEE, 881-890. 

Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: 
Oxford University Press. 

Isaaks, E. (1990). The Application of Monte Carlo Methods to the Analysis of 
Spatially Correlated Data. Stanford University PhD Thesis. 

Journel, A. G. (1988). Fundamentals of Geostatistics in Five Lessons. Stanford, 
California: Stanford Center for Reservoir Forecasting. 

Journel, A. G., & Huijbregts, C. J. (1978). Mining Geostatistics. New York: 
Academic Press. 

Journel, A. G., & Kyriakidis, P. (2004). Evaluation of mineral reserves: a 
simulation approach. New York: Oxford University Press. 

Krige, D. G., & Assibey-Bonsu, W. (1999). Practical problems in the estimation 
of recoverable reserves when using simulation or block kriging 
techniques. Optimizing with Whittle. Perth, Australia: Whittle 
Programming Pty Ltd. 

Krige, D. G., Assibey-Bonsu, W., & Tolmay, L. (2004). Post processing of SK 
estimators and simulations for assessment of recoverable resources and 
reserves for South African gold mines. Geostatistics Banff 2004 (pp. 375-
386). Banff, Alberta: Springer. 

Leuangthong, O. (2006). The Promises and Pitfalls of Direct Simulation. 
Edmonton: Center for Computational Geostatistics, University of 
Alberta. 

Leuangthong, O., & Deutsch, C. V. (2003). Stepwise conditional transformation 
for simulation of multiple variables. Mathematical Geology, 35:155-173. 

Roberts, D. E., & Hudson, G. R. (1983). The Olympic Dam copper-uranium-gold 
deposit, Roxby Downs, South Australia. Bulletin of the Society of 
Economic Geologists, 799-882. 

Rossi, M. E., & Badenhorst, C. (2010). Collocated Co-simulation with 
Multivariate Bayesian Updating: A Case Study on the Olympic Dam 
Deposit. 4th International Conference on Mining Innovation, MINIM 
(pp. 385-394). Santiago, Chile: R. Castor et al, eds. 

Rossi, M. E., & Deutsch, C. V. (2014). Mineral Resource Estimation. Dordrecht: 
Springer. 

Rossi, M. E., & Parker, H. M. (1993). Estimating recoverable reserves: is it 
hopeless? Geostatistics for the Next Century. Montreal: McGill 
University. 

Roth, C., & Deraisme, J. (2000). The information effect and estimating 
recoverable reserves. Kleingeld, WJ, Krige DG (eds), Proceedings of the 
Sixth International Geostatistics Congress, (pp. 776-787). Cape Town, 
South Africa. 



19 

Van Brunt, B. H., & Rossi, M. E. (1999). Mine planning under uncertainty 
constraints. Optimizing with Whittle. Perth Australia: Whittle 
Programming Pty Ltd. 

 


